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Logical Reformulation of Quantum Mechanics. 
III. Classical Limit and Irreversibility 
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This paper deals with two questions: (t) It contains a proof of the fact that 
consistent quantum representations of logic tend to the classical representation 
of logic when Planck's constant tends to zero. This result is obtained by using 
the microlocal analysis of partial differential equations and the Weyl calculus, 
which turn out to be the proper mathematical framework for this type of 
problems. (2) The analysis of the limitations of this proof turn out to be of 
physical significance, in particular when one considers quantum systems having 
for their classical version a Kolmogorov K-system. These limitations are used to 
show the existence of a "best" classical description for such a system leading to 
an objective definition of entropy. It is shown that in such a description the 
approach to equilibrium is strictly reduced to a Markov process. 

KEY W O R D S :  Quantum mechanics; classical limit; microanalysis; irrever- 
sibility. 

1. I N T R O D U C T I O N  

This is the third and last of a series of articles ~j~ (the first two will be called 
I and II), that  are concerned with the logical foundat ions  of q u a n t u m  and  
classical physics. In  I the no t ion  of a q u a n t u m  representat ion of logic was 

in t roduced and  one of the ma in  results was to show how the classical 
representat ion of logic to which we are used arises as a limit of q u a n t u m  

representat ions when Planck 's  cons tan t  tends to zero. 
However,  the a rguments  given in I remained at an intuit ive level and  

the ma in  task of the present paper  will be to offer a proof  for them. It turns 
out that  the proper  f ramework to be used is provided by microlocal  
analysis, one of the parts of mathemat ics  that had a most  significant 
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advance during the last two decades. In fact, microlocal analysis replaces 
the study of a linear partial differential equation such as the Schr6dinger 
equation by a calculus in phase space, so that it deals particularly well with 
the localization properties of Fourier transforms. As such, it is perfectly 
suited to the kind of question of interest here. I have not been able to find 
proofs resting only upon elementary analysis, so I chose rather to apply 
directly the methods and the results given by H6rmander. (2) 

A theory of measurement was also proposed in I, where of course the 
question of irreversibility was met. The present analysis of the conditions 
where quantum logic tends to classical logic exhibits a significant exception 
when the quantum system under consideration has for its classical version 
a Kolmogorov mixing K-system. Furthermore, the microlocal analysis of 
classical mechanics made by Fefferman, (3) where classical mechanics was 
conceived as an approximation to quantum mechanics up to a given 
relative error, allows one to characterize what may be the "best" limiting 
description of a system in the proposition calculus, i.e., the "most" one can 
tell consistently about the system. 

These two remarks, when taken together, strongly suggest a new 
approach to the foundations of thermodynamics that remains in the 
general framework I have just been constructing, so far as it may offer an 
objective definition for the "best" description of a physical system by a 
classical distribution function. It is shown that the master equation for such 
a distribution reduces completely the problem of the approach to 
equilibrium to the study of a Markov process. 

This question of irreversibility somewhat exceeds the limits of the 
present investigation, so that it will be presented here only in general terms 
and more as a program to be developed independently. 

2. W - S Y M B O L S  A N D  O P E R A T O R S  

I shall consider a quantum system consisting of a finite number of 
interacting particles, the total number of degrees of freedom, i.e., thrice the 
number of particles, being denoted by N. The position and momentum 
coordinates will be denoted collectively by x = ( x ,  ..... XN) and 
P = (Pl ..... PN). I shall use a scalar product 

N 

p . x =  y~ p j x j  
j = l  

I shall consider square integrable wave functions u(x) as well as their 
Fourier transforms - u ( p )  in the form 
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Ll(X) = f h N dp e x p ( i p -  x/h) -u (p )  

-u(p) = f dx e x p ( - p ,  x/h) u(x) 

To an operator A, I shall associate a Wigner-Weyl function, or 
W-function for short, defined by (4'5) 

(" 

a(x, p)= J (x'  IA ix") &[x-  (x' + x")/2]  exp[ - -  ip. ( x ' -  x")/h] dx' dx" 

(2.1) 

I shall use systematically the same lower-case or capital letter for the 
W-function or the operator. When a(x, p) is an indefinitely differentiable 
(C ~ ) function and when furthermore its derivatives are bounded in the 
form 

i (O/~x 1)~1 ... (~/OXN)~N(~/~pI)ill... (O/OpN)~Na(x, P)l 

C=~(p2 + p2)(m 1~[)/2 (2.2) 

where c~1 ..... /~N are integers, [/?l =/~1 + "'" +/3N, and CoB is a constant, m a 
positive or negative number, it is said that a(x, p) is a W-symbol of order 
m. For  instance, a(x, p) = x defines a symbol of order 0 and a(x, p) = p a 
symbol of order 1. Note that the functions x and p are respectively the 
symbols of the operators X and P for position and momentum. 

I shall use the following properties involving the norm and the trace: 

IIAII ~ f [a(x, P)I dx dp h N (2.3) 

T r A  = f a(x, p)dxdph  -N (2.4) 

To the adjoint A + of an operator is associated the complex conjugate 
W-function a*(x, p), so that a real W-function is associated with a self- 
adjoint operator. When A is a positive-definite operator, its W-function is 
not necessarily positive everywhere. This is well known in the association 
between a density operator and a Wigner statistical distribution function 
in (x, p) spaceJ s~ Conversely, the operator associated with a positive 
W-function does not necessarily have a spectrum that is confined to the 
positive real axis. 

The product of two operators, when written in terms of the associated 
W-functions, is not trivial. In order to express it, it will be convenient first 
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to define the Poisson bracket as an operator acting,between two functions 
in the following way: denote by {-} the operator 

{ .  } = a / a x  . a/@- a/ap. a / a x  (2.5) 

where in each scalar product of derivation operators, the first derivative 
acts on the function standing on the left and the second one acts on the 
right. For instance, 

a{ . } b = { a, b } =- Oa/ax . #b/@ - Oct/@. #b/ax 

To the operator C = AB is associated the W-function 

c(x, p) = a exp( - i h / 2 { .  })b (2.6) 

which can be expressed more explicitly by using Fourier transforms as 

c(x, p) = (h/2)--2N f a(x  + y, p + q) b(x + z, p + s) 

x exp[2i(s �9 y - q.  z) /h] ely dz dq ds (2.7) 

When a and b are W-symbols, c is also a W-symbol. 
I can now describe the general idea of the present approach: It consists 

in associating a quantum projector E with the classical proposition "The 
system is in a domain D of phase space." A natural idea would be to take 
for the W-function associated with the operator E the characteristic 
function of D that is equal to one in D and to zero outside. However, it is a 
discontinuous function and does not give rise to a good projector. To do 
so, one must use a C ~ function. Conversely, it will be found that such a 
smoo th  function approaching the characteristic function of D generates a 
projector when D satisfies some necessary conditions. This leads us to 
introduce what is called in the literature a Schwartz function. 

3. S C H W A R T Z  F U N C T I O N S  

This short section will be devoted to a few technical details about 
Schwartz indefinitely derivable functions and how they can be used to 
smooth the boundary of a domain in phase space. 

Let us consider a C ~ function of one variable F(x)  that is everywhere 
equal to zero except in the interval [0, 1], where it is positive. It  vanishes 
together with all its derivatives when x is equal to 0 or to 1. I shall assume 
that its integral over [0, 1 ] is equal to unity. 
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I shall also consider the primitive function 

f? G(x) = F(t) dt, x >~ 0 

=O, x < 0  

It is a C ~ function except at x = 0; it is identical to zero for x < 0  and 
x ~> 1. It is discontinuous at x = 1, where its value passes abrupty from 0 to 
1 when x crosses zero by increasing values. 

It will be necessary to know what bounds can be put on such 
functions and on their derivatives. According to a theorem by Denjoy and 
Carleman (see ref. 2, Vol. 1), the best one can do in order to get the 
smallest bounds is the following: Take an infinite sequence of positive 
numbers a l ,  a2,..., a ..... such that their sum is equal to one. Then, it is 
possible to have the bounds 

lG(~)(x)l <<,2k-l[ala2 ...ak[--1= Ck ' k >  1 (3.1) 

G(x) ~ 1 = Co (3.2) 

These inequalities show that one can bound G and its derivatives by 
numbers that are of the oder of unity if the order of derivation k is kept 
small enough. However, when we let k become large, the right-hand side of 
inequality (3.1) grows more rapidly than k! times a quantity increasing 
itself more rapidly than the kth  power of any given number. This very 
rapid increase will turn out to be a ser ious 'hindrance in considering 
macroscopic systems because then one will have to deal with values of k 
that will be larger than the number of degrees of freedom. 

I now introduce a few useful notions relating to domains in phase 
space. 

Let D be a simple domain in phase space (i.e., connected and simply 
connected). Call B its boundary, assumed to be C ~ manifold, tn a small 
neighborhood of a small region of B, one can use local coordinates 
(z, Ul,..., U2N-~), where z is a distance to B, counted positively outside D. 
Let 2 be a given number and call the margin M of D the region where z is 
positive and smaller than 2. For  the margin to be completely defined, it 
would be necessary to make the local coordinates more precise, but this 
will come later. 

Define a function by its expression in local coordinates: 

~(x, p) = a(z/;t) (3.3) 

It is a C a function, with support  given by M, it is equal to one on B, and 
it vanishes together with all of its derivatives on the outside boundary of 
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M. Let Z(x, P) denote the characteristic function of D, which is equal to 1 
in D and 0 outside. The function 

(~(x, p) = Z(x, p) + tp(x, p) (3.4) 

is everywhere C ~ is equal to one in D, and vanishes along with all its 
derivatives on the outside boundary of M. Its support is D w M. 

4. E S T I M A T E S  FOR AN O P E R A T O R  P R O D U C T  

Let us now consider two domains D 1 and D2 in phase space having 
boundaries Bj and B 2 and margins M1 and M2. I introduce the two 
smoothed characteristic functions ~bl and ~b 2 as defined above as well as the 
two operators ~bl and ~2 admitting them as their W-symbols. It will turn 
out later that these operators approximate some projectors that will 
be used to define the limit of quantum logic to classical logic. Their 
commutators and therefore their products will be of interest. 

Denote the volume of a region D in phase space by 

[D] =fvdxdp (4.1) 

I shall prove the following theorems. 

Theo rem 1. For [D] large enough, when the boundary manifold 
B is regular enough and the number of degrees of freedom is small enough, 
the operator q~ is approximately equal to a projector in the Hilbert space 

of square integrable wave functions. 

Theorem 2. For two fixed regions D1 and D 2 of phase space 
obeying the conditions of Theorem 1, the commutator [~1, ~2] of the 
corresponding approximate projectors tends to zero in norm when h tends 
to zero. 

The wording of these theorems remains somewhat vague but the exact 
limitations will appear in the course of the proof. 

Clearly, Theorem 1 provides a wide family of projectors as were used 
in I to define quantum predicates, whereas Theorem 2 is the essential tool 
to prove that quantum representations of logic tend to the classical 
representation when Planck's constant tends to zero. Furthermore, it will 
be found that the limitations such as "regular enough" and "small enough" 
have important physical significance. 

Theorem 1 is given without proof by Fefferman/3) The proof of both 
theorems is an elementary exercise in microlocat analysis if one uses the 
results contained in H6rmander's book (ref. 2, Vol. 3), Chapter 18). 
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Everything relies on a bound that can be imposed on the quantity 

u12(x, p )=O~ e x p [ - i h { .  } /2]O2-q)2  + ih/2{q~l, (k2} (4.2) 

which will be used as such in the proof of Theorem 2 and with ~b~ = ~b 2 = 
in the proof of Theorem 1. The quantity u12 represents the rest of the 
W-symbol associated with the product ~b~q~2 when the first two terms of 
Eq. (2.6) have been subtracted. 

The proof is obtained in three steps. 

1. L o c a l i z a t i o n .  I shall restrict attention to the case where both 
regions D1 and D2 have essentially the same size L in the x direction and P 
in the p direction. By this I mean that, up to some numerical factor of 
order unity, all the dimensions of these domains are comparable to L or P. 

Introduce a neighborhood V of D1 w D z and cover it by several cells 
Ca that may have curved boundaries. The precise definition of such a cell is 
the following: A canonical transformation v: (x, p ) ~  (x', p ')  can bring it 
upon a rectangular cell in the variables (x', p'). It will be convenient to 
limit furthermore the domains under consideration by assuming that, for 
each index c~, the intersection B1 c~ B2 c~ C~ is either a manifold B12 ~ of 
dimension 2 N - 2  along which B1 and B 2 a r e  transverse or that it has 
dimension 2 N - 1  and then coincides with both B~ m C, and B2m C~. 
Recall that two manifolds are said to be transverse when they can be 
written as f ( x ,  p)  = O, g(x, p ) =  0, and when their "normals" 

n : (t, 3) : (Of/dxl ..... Of/dxu; ~f/Opl ,..., ~f/~PN) 

and n ' =  (z, () satisfy the condition ~r(n, n ' ) r  0, where ~ is the symplectic 
form 

a(t, 3; z, ( )  : ( 3 - z -  ( .  t)/h (4.3) 

In the first case, B~ c~ C~ will be brought upon the plane x'l = 0 by the 
canonical transformation v and B 2 c~ C~ on the plane P'I = 0. In the second 
case, B1 ~ B 2 c~ C~ will be brought upon the plane X'l = 0. 

Let v denote the number of the cells covering V. 
Since the Poisson parenthesis operator is invariant under canonical 

transformations, the proof of inequality (4.2) can be localized by consider- 
ing it in each cell C~ and working with the transformed rectangular boxes 
C'~ in the coordinates (x', p'). More precisely, it will be assumed that the 
matrix elements of the Jacobian for the canonical transformations v ~ are 
uniformly bounded by a number of the order of one once the units L and P 
have been chosen. These conditions imply that a region having a com- 
plicated boundary will have to be covered by a large number of cells v. 
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I now specify the margins. In the case of intersection, the local margin 
of D1 in C'~ is taken to lie between the planes X'l = 0 and x'~ = LA, and the 
margin of D2 between P'I = 0 and P'I = PA, with A being a small number 
fixed once and for all and taken to be the some in all the different cells. 

2. M e t r i z a t i o n .  Using H6rmander's method (ref. 2, Chapter 18.5), 
I introduce a metric in C'~ that will be given by 

gx,,p,(dy, dq)=(L2+x'2)- ldy2+(p2+p '2) ldq2  (4.4) 

The dual metric with respect to the symplectic form (4.2) is then given by 

S 2 gx, p,(t, q ) = s u p [ a ( t ,  q; y, )] /gx',p'(Y, s) 
y,S 

= h - 2 [ ( p 2  -t- p ,2 ) t  2 + (L 2 + x ,2)q2]  (4.5) 

The corresponding H6rmander bounding function is then given by 

h(x', p ' ) =  sup qx, p,(t, q)/g;,p,(t, q) 
t,q 

= hl - (L 2 q_ xt2)(p2.3i_ p ,2 ) ]  - , /2 (4.6) 

3. Bounds. I now define a quantity [h~bLlk that is a seminorm on the 
product ~bl~b2: Denote collectively by X the coordinates (x ' ,p ' ) .  The 
derivatives of order m of ~b~ over these variables generate a symmetric mul- 
tilinear form ~bl(X'; T1 ..... Tin) over the vectors tangent to phase space at a 
given point. The seminorm IL~llk will be defined as the supremum of 

rl,..., ri,..., G gx,(rj) lq gx,(r9 
j j = l  

In practice, it is a numerical constant depending upon the bounding 
constants Cr of the Schwartz functions up to order k times a power A k 
coming from the derivation because of our choice for the smoothing 
functions ff and for the margins. ! simply write this bound as 

[l~llk= C~A k (4.7) 

Then, according to H6rmander 's  Theorem 18.5.4, one has a bound for u12 
that is of the form 

lu12(X')l ~ C'hn(X ') (4.8) 

where C" is a constant that is a linear combination of the constants C~ up 
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to a value of k = N + n + 2, with n being an arbitrary positive integer that 
can be chosen at will. Therefore one has 

[ulz(x', P')I ~< Ch'(x', p') A -(N+,+2) (4.9) 

where C is again a numerical constant. 
One can now use the inequality (2.3) to get a bound for the norm of 

the operator U~2 associated with the W-symbol u12. The integration over 
phase space appearing in Eq. (2.2) is performed separately in each cell Ca. 
Using the fact that 

fR2U dx' dp' h~(x ', p') = (c.)N(Lp)Nh'(O, O) (4.10) 

where 

f + ~o U 2 ) -- n/2 c.= d u ( l +  
c~ 

the resulting bound is finally 

]1 U1211 <~ v C ( c . ) N ( h / L P )  n -  Nz~ -- (" + N +  2) (4.11) 

P r o o f  o f  T h e o r e m  1. Take r =r ~---r and call 45 the operator 
having r for its W-symbol. The operator 452 has for its W-symbol 

r162 p) = r exp( - ih /2{ .  })r (4.12) 

Introducing the difference 

pt(x, p) = r r (4.13) 

and taking into account the fact that {r r =0,  one can find that the 
operator R 1 associated with the W-symbol Pl is, according to (4.11), 
bounded in norm by 

IIRlll • v C ( C n ) N ( h / L p ) n - N z l  - ( n + N + 2 )  (4.14) 

On the other hand, from Eq. (3.3) 

r _ r = 02  _ 0 - p2(x ,  p )  (4.15) 

where, according to Eqs. (2.3) and (2.4), 

TrIR2] ~< llR2JI ~< [M]h -N (4.16) 

822/53/3-4-27 
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The volume [M]  of the margin is of order (LP)NA. Since, according to 
Eq. (2.4), one has 

Tr q~ = [D]h -N (4.17) 

one gets 

q52-qS=Rl + R2=_R (4.18) 

The operator R is compact, so that its spectrum is discrete with eigenvalues 
r 1, r2,..., satisfying, due to Eq. (4.16), the bound 

Ibl ~ gMlh N 

Furthermore, because of the property 0~<~-~2~< 1, all these 
eigenvalues lie essentially between 0 and 1 as a consequence of the sharp 
G/irding inequality. 

As a result, ~b differs from a projector E associated with a subspace of 
having dimension [D] -h - u  by a compact operator that has essentially 

the much smaller number [M]  . h  - u  of eigenvalues, all essentially con- 
tained in the interval [0, 1 ]. This is the exact meaning of Theorem 1. 

Proof of Theorem 2. Theorem 2 is a simple consequence of the 
bound (4.11 ), since it implies 

II~x" ~ 2 -  ih/2~1211 ~ 0 

when h - ,  0, ~12 being the operator with symbol {~b~, ~b2} that is bounded. 
Interverting the functions given 

11~2. ~ + ih/2~21L -~ 0 

so that I[[~bl, ~2]1l tends to zero with h as stated by Theorem 2. 

A d d e n d u m .  It has been pointed out by L. H6rmander (personal 
communication) that these theorems were partly known, m) Furthermore, 
he pointed out the following weaknesses in the above proof: (1) The 
operators must belong to the trace class (this is true for the applications to 
be used here). (2) The arbitrary power of h in formula (4.8) only occurs 
when one performs an expansion of ~b 1 e x p [ - i h / 2 ] ~  2 to a given order that 
must be in general higher than the first order in h. In the present case, the 
known results m) given a bound R as in Eq. (4.18) of the form [M]h -N, as 
stated above, provided that A ~> hX/3. 
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5. PHYSICAL CONSEQUENCES 

The preceding theorems have several useful physical consequences. 

1. Theorem 1 gives us much more freedom when defining the 
predicates of a quantum representation of logic. When dealing with 
semiclassical statements that correspond to large volumes in phase space, 
we can agree to replace the projectors by the above operators 45(D) 
without finding any practical difference. Then, using the freedom we have 
in choosing the smoothing functions, there is no difficulty in satisfying the 
compatibility conditions. 

When dealing with predicates of the spcial type that were used in 
papers I and II, i.e., those associated with a part of the spectrum of a 
dynamical variable, it is possible to let the margins tend to zero in the 
following case. Let F(p, q) be the dynamical variable; assume that there is 
a global canonical transformation transforming the function F(p, q) into 
the variable x'l; finally, let the domain D under consideration in the 
predicate be given by a <~ x'~ ~ b. Then the function ~b associated to the 
domain D by Theorem 1 satisfies trivially the relation 

(~ exp ( - ih /2{ .  })~b = ~2 

so that, when the margin becomes very small, one gets 452 _- 45, which is the 
characteristic property of a projector. In particular, this is true for the 
dynamical variables p or q, the only operators to have been considered 
in II. 

When we associate the operator 45 to a domain D in phase space to 
define a predicate, the complementary predicate is simply defined by the 
operator I -45 ,  which has practically the same properties with regard, to 
the domain complementary to D. More generally, one can define predicates 
corresponding to a Griffiths family by using a C ~ partition of unity on 
phase space. 

2. Theorem 2 provides all that is necessary to implement the intuitive 
considerations that were given in I for one of the most significant results of 
the present investigations, namely that consistent quantum representations 
of  logic tend to the classical representation when Planck's constant tends to 
zero. 

When dealing with the operators associated with a region D of phase 
space, this result assumes that the limitations that were found during the 
proof of the theorems are respected. These limitations will be discussed 
more carefully presently from a physical point of view. 

3. In practice, h remains finite, so that the preceding results only hold 
approximately for regions of phase space having a large volume in units 
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h N. There is, however, a significant limitation, when one considers 
macroscopic objects having a large number of degrees of freedom. 

It has been noticed in Section 3 that the bounding constants increase 
very rapidly with the order of the derivation k and it was also found in 
Section 4 that one had to consider larger and larger orders of derivation 
when N increased. This may have the effect that any small relative value 
of h might be amplified tremendously in the bounds by the numerical 
coefficients when N becomes large. 

In fact, this is no surprise and it should be so, since we know that 
many degrees of freedom remain quantized in a macroscopic object. The 
classical representation of logic only applies to collective variables, such as 
the motion of the center of mass. In fact, classical logic can go very deep in 
the description of matter, since we know, for instance, from the Born- 
Oppenheimer approximation, that it applies to the position of the atomic 
nuclei in a solid. 

4. Let us consider another limitation. Suppose that the boundary B 
of the domain D becomes extremely irregular, e.g., strongly wiggling. Then 
again the bounding constants will become large, because we shall have to 
let the number of cells v realizing localization grow without any limit in 
order to satisfy the conditions that were imposed on the local canonical 
transformations. 

This is really an intrinsic limitation and not just a technical difficulty. 
It has to do with the type of canonical transformations that can be used. 
Such limitations were already met by Fefferman/3) Presumably, it has much 
to do with the result by Van Hove (6) showing that some apparently benign 
classical canonical transformations can throw our functions out of the 
initial Hilbert space, i.e., that they do not correspond to a unitary transfor- 
mation. 

5. Systems where the classical equations of motion tranform well- 
behaved cells in phase space into very irregular regions have been actively 
investigated under the name of K-systems. (v) This remark provides a 
natural link with another fundamental problem already encountered in 
paper I: irreversibility. 

6. I R R E V E R S I B I L I T Y  A N D  LOGIC 

Irreversibility was encountered in paper I when discussing 
measurement theory. In fact, most if not all the measuring instruments for 
quantum systems must behave irreversibly, if only to work. 

The question of irreversibility has so many aspects that only a few of 
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them will be mentioned here and in fact the only ones that will be found 
useful so that a solution might appear. 

First recall the example of the classical description of a system of N 
particles using the BBGKY hierarchy. One can define a distribution 
function fx(X, p) for the N particles and define from it by integration one- 
particle f l ,  two-particle f2 distribution functions, etc. Each of them has an 
entropy 

S.  = - k  f f~ ln(f .)  dxl ... dx.  dpl ... dpn 

The Liouville theorem shows that S jr is a constant. As for $1, it 
increases with time more rapidly than $2, itself increasing more rapidly 
than $3, and so on. Therefore a question arises: Is entropy only a measure 
of our insufficient knowledge of the system, and is its increase strictly 
associated with the mathematical representation we have used to describe 
it? If such were the case, thermodynamics would appear only as a branch 
of information theory. 

The reverse question is then obviously: Can entropy be defined objec- 
tively? Such a question has much to do with the one asked about quantum 
mechanics, since one is already looking for an objective description of 
physical reality. 

It will be useful ro recall also an interesting aspect of the description of 
irreversibility as it is done in information theory. (8) Assume that some 
collective variables q associated with quantum, observables Q have been 
chosen to describe a quantum system. The initial values qO of q being given, 
one can find the density operator Po minimizing the information 

I =  Tr(p o In Po) (6.1) 

with prescribed values qo for the averages of the quantum operators Q. 
Letting the density operator evolve according to the Schr6dinger 

equation, i.e., using 

p ( t )  = u ( t )  po u-:(t) 

one meets the well-known difficulty that the entropy 

S(t)  = - k  Trip(t)  In p(t)] (6.2) 

is found to be a constant. However, evolution takes p(t) out of the family 
Pro(q) that is defined by minimum information with a value q for the 
average of Q. Therefore, one projects the evolved density operator p(At) 
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after a time At upon this family by computing the average values of the 
collective variables Q at time At: 

q(At) = Trip(At)  Q] 

and redefining the new density operator pm[q(At)] as corresponding to 
these average values. 

Accordingly, when seen from the standpoint of information theory, 
irreversibility looks like a succession of operations that take permanently 
the density operator back to the stable of wise ignorance. 

My last remark will briefly deal with K-systems. ~7) They are classical 
dynamical systems that are defined by the way their dynamical 
automorphism g(t) acts on all the possible partitions of phase space into 
disjoint cells. Very roughly, one might say that for such a system, most cells 
become completely irregular under the action of g(t) when time becomes 
large enough. Still very roughly, one can also consider an initial well- 
behaved cell C in phase space that has a volume Vo and consider at a later 
time At the volume V(At) of the convex envelope of the transformed cell 
g(At). C that is some measure of what became of its extension and its 
meandering. For K-systems, one finds the relation 

V(At) ~ V o exp(Z" At) (6.3) 

where the coefficient Z measures the rate of increase of the so-called 
Kolmogorov entropy that can be rigorously defined in terms of partitions. 
As far as I know, no clear-cut relation has been found between the 
Kolmogorov entropy and the physical entropy. 

It is often suspected that the truly irreversible classical systems are in 
fact K-systems. However, we have just found that classical systems, not 
only dynamically but also logically, should be understood as having a 
quantum foundation. Then a difficult problem arises because almost 
nothing is known about quantum systems having for their classical version 
a K-system. (9) 

I therefore introduce a new approach. According to what has been 
said in Section 5, the irregular domains that are produced by evolution 
when the classical automorphism g(t) of a K-system acts on well-behaved 
cells will rather soo n escape the conditions where Theorems 1 and 2 are 
valid. Although there may be a classical representation of logic describing 
the system at some given time by using well-behaved cells, soon afterward 
the evolved cells will no longer correspond to projectors and will not satisfy 
the compatibility conditions. 

Thus, one arrives immediately at what appears to be the root of the 
problem: Since Planck's constant is finite and therefore quantum mechanics 
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should enter the physical description of reality, the evolution of K-systems 
breaks the correspondence between the quantum and the classical represen- 
tations of logic. Stated very harschly, this means that K-systems are 
precisely those where classical dynamics has no reliable logical meaning. 

When making such a statement, I do not suggest of course that the 
mathematical analysis of classical K-systems is wrong, but that it has no 
direct correspondence with the interpretable behavior of the system. 

Such a point of view completely modifies the methodological 
framework that one may use in elaborating the theory of quantum 
K-systems. It leads naturally to another approach to the problem of 
irreversibility that will now briefly be described. Its present form is still 
rather primitive and its should be considered at best, for the time being, as 
a program for future research. 

7. I R R E V E R S I B I L I T Y  A N D  D Y N A M I C S  

This approach is the following. Assume that we have an objectively 
defined family of partitions of phase space in cells, say {C{}, where C~ is 
the cell number ~ for one of the allowable partitions denoted itself by the 
index j. When saying that it is objectively defined, I mean that such a 
family is obeying some well-defined mathematical criterion and that it is 
not something completely at our disposal. In fact, such families do exist. 
They have been found by Fefferman as the partitions that obey the 
following property'3): Each cell C~ can be brought upon a rectangular cell 
by a well-behaved canonical transformation so that to each of them 
corresponds a good projector ~b~ according to Theorem 1, and therefore a 
subspaee ~ of ~ .  Taking jig as the direct sum Z~ ~ means that the 
cells can be chosen in such a way that the Hamiltonian be approximately 
diagonalized. More precisely, the deep and general result obtained by 
Fefferman is that the Hamiltonian H appears essentially in that represen- 
tation in a block-diagonal form, nondiagonal terms being small in norm. 

Fefferman's construction of these cells is highly involved, but I shall 
need only three basic facts concerning them: 

(i) There is in general a large family of such partitions. 

(ii) They are curved cells that are obtained from a rectangular cell by 
an allowable canonical transformation. The definition of such a transfor- 
mation by Fefferman relies on the character of its generating function as a 
pseudo-differential symbol. 

(iii) The partitions are such that classical mechanics is a good 
approximation of quantum mechanics up to relative errors of a given order 
e. In practice, Fefferman's ~ is what I called A in Section 4. 
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It might seem that our freedom of choice for describing the system is 
still rather large, since the choice of e is at our disposal and that we are 
therefore far from objectivity and still in the domain of arbitrariness. 
However, the power of A exhibited in Eq. (4.14) shows that there may be a 
best A such that terms like R 1 and R 2 in Eq. (4.18) are comparable, in 
which case the ultimate limit of a precise classical description of physics has 
been reached. 

Choosing A in this way, the families {C~} are all equivalent. To each 
partition of phase space j is associated a partition of unity {~b{} where each 
C ~ function ~b{(x, p) has C~ for its essential support and where 

~b~(x, p ) =  1 (7.1) 

whatever may be the point (x, p). Let ~b~ be the corresponding semi- 
projector operators and let us from now on work with one fixed partition, 
omitting therefore the index j. 

Let the initial density operator of the system be a given operator p. 
Let also p(x, p) denote the associated W-symbol, where one can recognize 
the Wigner distribution function (5~ in phase space. Let us decompose it 
along the partition of unity (7.1) in the following form: 

p(x, p) = ~ pa(x, p) - ~ [p(x, p) (b~(x, p)] (7.2) 
o~ a 

Such a decomposition corresponds to what Fefferman calls the pseudo- 
differential calculus associated with the Hamiltonian H. It can deal in 
principle with any reasonable kind of density operator. 

Using Eq. (2.4), I now define the numbers 

g~ = Tr(paq~) = f p~(x, p) dx dp h N (7.3) 

They are positive as being the integrals of a Wigner function over a 
sufficiently large cell. Furthermore, because of Eq. (2.4), one has 

ga = 1 (7.4) 
a 

since Tr p = 1. Then, calling again [Ca] the volume of cell Ca, one can 
consider a function f (x ,  p) that represents the "best" description of the 
system by a classical distribution function. It is defined as a function taking 
the constant value ga[Ca] 1 over each of the cells Ca. According 
to Eq. (7.3), it satisfies the normalization property of a probability 
distribution, i.e., 

~ f(x,  p) dxdp= 1 (7.5) 
J 
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Our problem will now be to find a master equation controlling the 
time evolution of this distribution function. 

If the classical version of the dynamical system is a K-system, the cells 
will become uncontrollably deformed after a small interval of time that 
remains, however, determined by classical evolution. Such a situation has 
much in common with what was met above when the evolution was 
described in the framework of information theory and I now adopt a 
similar technique. 

Let us admit that the small details of the functions p~(x, p), except for 
their average values f~ in cells Ca, are not accessible. The opposite 
assumption would violate Fefferman's description of classical mechanics to 
order d,  Then all the classical propositions that can be meaningful must be 
limited to cells no small than the C~ and to distribution functions of the 
same type as the function f I have introduced. This is equivalent to using 
density operators whose W-symbols are given by 

pro(X, p)= ~ f~b~(x, p) (7.6) 
c~ 

or p m = Z ~ L e ~ .  
The system having the K-property, the time-transformed operator 

U(t) q5 U-~(t), will no longer approximate a projector after a finite time of 
order Z "-~, L" as given in Eq. (6.3). So let dt be a time smaller than s 
and such that U(At)~b~U-~(At) is still almost a projector. Then it is 
possible to project it back on the initial projectors by writing 

U(At)qs~U l ( A t ) = ( ~ q b ~ ) [ U ( t ) q ~ U - l ( A t ) ] ( ~ )  

More directly, one may consider the W-symbol ff~(x, p) associated with 
the operator U(At)~ U-I(At) and decompose it along our partition of 
unity according to 

where 

fl fl 

(7.7) 

Then the representation (7.5) of the density operator becomes 

pro(x, p, At)= ~ f~(At) ~b,(x, p) (7.8) 

822/53/3-4-28 
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with 

f~(At) = ~ 6)~BfB (7.9) 
// 

As a result, one has obtained the following master equation for the 
evolution of the distribution function: 

Aft/At = ~ O~fa  (7.10) 

It has the form of a Markov process, for which the conditions of 
approach to equilibrium have been rather well investigated. 

This can be considered as the end of the program. Were it to be 
fulfilled, its obvious interest would be that it involves in principle no 
arbitrariness, so that the entropy 

S= - ~  f~ ln(f~) (7.11) 

should have an objective meaning. In principle, no more detailed classical 
form of entropy could be defined that would respect the limitations that are 
imposed on the classical representation of logic by quantum mechanics. 

If this approach turns out to be correct, it would imply that irrever- 
sibility holds (at least?) when the classical version of the dynamical system, 
or of a part of its is of K-type. Thus, it would provide a link between the 
Kolmogorov entropy and the physical entropy through the coefficient s 
that controls the rate in the master equation and therefore the rate of 
increase of the physical entropy. 

Maybe this might go deeper: Irreversibility would emerge in physical 
systems (as opposed to systems described mathematically as classical 
systems, although such a description might not have a physical meaning), 
because of two complementary properties: Looking at them as classical 
systems, they are K-systems, but looking at them as an approximation to 
quantum physics, there is a limit to the precision of the approximation that 
breaks under evolution. In other words: classical physics, being nonlinear, 
can lead to arbitrarily wild sorts of evolution; quantum physics looks nicer 
because it is a linear theory, so that their correspondence can only be kept 
for a short time. Thus, irreversibility might appear as a bridge taking its 
foundations on both the classical and the quantum worlds and could even 
not appear when treated strictly in classical mechanics or in quantum 
mechanics. Such a bridge could not even be thought of in the Copenhagen 
version of quantum mechanics, although of course other approaches to 
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irreversibility have been found efficient in its context (see in particular 
Pauli(l~ The fact that  such a bridge has become possible warrants  further 
investigation. 
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